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Abstract

The Simple Temporal Problem (STP) is a sub-problem of
almost any planning or scheduling problem involving time
constraints. An efficient method to solve the STP, called
4STP (Xu and Choueiry 2003), is based on partial path con-
sistency and starts from a chordal constraint graph. In this
paper, we analyse this algorithm and show that there exist
instances for which its time complexity is quadratic in the
number of triangles in the constraint graph. We propose a
new algorithm, P3C, whose worst-case time complexity is
linear in the number of triangles. We show both formally and
experimentally that P3C outperforms4STP significantly.

Introduction
The Simple Temporal Problem (STP) was first proposed by
Dechter et al. (1991). The input to this problem is a set of
(time) variables with constraints that bound the difference
between pairs of these variables. The solution then is (an
efficient representation of) the set of all possible assignments
to these variables that meet these constraints, or the message
that such a solution does not exist.

The STP has received widespread attention that still lasts
today, with applications in such areas as medical informat-
ics (Anselma et al. 2006), spacecraft control and opera-
tions (Fukunaga et al. 1997), and air traffic control (Buzing
and Witteveen 2004). Moreover, the STP appears as a piv-
otal subproblem in more expressive formalisms for tempo-
ral reasoning, such as the Temporal Constraint Satisfaction
Problem—proposed by Dechter et al. in conjunction with the
STP—and the Disjunctive Temporal Problem (Stergiou and
Koubarakis 2000). For our purposes, we will focus on the
importance of the STP for temporal planning (Nau, Ghallab,
and Traverso 2004, Chapter 15).

Traditionally, planning has been concerned with finding
out which actions need to be executed in order to achieve
some specified objectives. Scheduling was confined to find-
ing out when the actions need to be executed, and using
which resources. A typical architecture exploiting this sep-
aration is presented in Figure 1: the first step separates the
causal information from the temporal information, resulting
in a classical planning problem that is solved with a classical
planner. This is then combined with the temporal informa-
tion that was removed during the first step to produce a tem-
poral plan. This approach is for example taken by McVey et
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Figure 1: A typical architecture separating planning and
scheduling. Adapted from (Halsey, Long, and Fox 2004).

al. (1997).∗

However, in reality, planning and scheduling are inter-
twined: time constraints affect which actions may be cho-
sen, and also how they should be combined. In such cases
the architecture of Figure 1 may not produce valid plans in
all occasions. The Crikey planner (Halsey, Long, and Fox
2004) circumvents this problem by identifying which parts
are separable, and which are not. In the parts that are non-
separable the causal and temporal problems are solved to-
gether; the separable parts are treated as separate problems.

Whereas Crikey tries to decouple planning and schedul-
ing as much as possible, other people have taken an itera-
tive approach. Both (Myers and Smith 1999) and (Garrido
and Barber 2001) discuss this type of approach in general.
A specific example of the approach is MachineT (Castillo,
Fdez-Olivares, and González 2002). MachineT is a partial-
order causal link planner that interleaves causal planning

∗Application of the architecture sketched here is not limited
to scheduling over time; Srivastava, Kambhampati, and Do (2001)
propose a similar architecture to schedule over the available re-
sources.
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Figure 2: An example STP instance S

with temporal reasoning. The temporal reasoning module
works on an STP instance that represents the partial plan of
the causal planner. It propagates time constraints, can be
used to identify threats by finding actions that possibly over-
lap in time, and ensures consistency. The same approach is
taken by VHPOP (Younes and Simmons 2003).

Especially in the latter iterative approaches, the efficiency
with which STPs allow temporal information to be dealt
with is an important feature. For large problems, millions
of partial plans may be generated, and for each of those the
STP has to be updated and checked for consistency. In order
not to become a bottle-neck, the STP has to be solved very
quickly. The best known algorithm for STPs is called4STP
(pronounced triangle-STP) (Xu and Choueiry 2003). It re-
quires that the network be represented by a chordal graph.
Once a chordal graph is obtained (for which efficient heuris-
tics exist),4STP may require time quadratic in the number
of triangles in the graph, as we will prove below. Analysis of
this proof allows us to develop a new algorithm, called P3C,
which is linear in the number of triangles. This P3C algo-
rithm and the analysis of 4STP are the main contributions
of this paper.

The remainder of the text is organised as follows. First,
we formally discuss the Simple Temporal Problem and de-
scribe the existing solution techniques, including 4STP.
Then, we analyse 4STP and propose our new algorithm
P3C. After experimentally validating our method, we con-
clude.

The Simple Temporal Problem
In this section, we briefly introduce the Simple Temporal
Problem (STP); for a more exhaustive treatment, we re-
fer the reader to the seminal work by Dechter, Meiri, and
Pearl (1991).

An STP instance S consists of a set X = {x1, . . . , xn} of
time-point variables representing events, and a set C of m
constraints over pairs of time points, bounding the time dif-
ference between events. Every constraint ci→j has a weight
wi→j ∈ R corresponding to an upper bound on the time dif-
ference, and thus represents an inequality xj − xi ≤ wi→j .
Two constraints ci→j and cj→i can be combined into a sin-
gle constraint ci↔j : −wj→i ≤ xj − xi ≤ wi→j or, equiv-
alently, xj − xi ∈ [−wj→i, wi→j ], giving both upper and
lower bounds. An unspecified constraint is equivalent to a
constraint with an infinite weight; therefore, if ci→j exists
and cj→i does not, we have ci↔j : xj − xi ∈ [−∞, wi→j ].
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Figure 3: Two ways to encode time constraints. The wrap-
per (i) encodes a time window within which the actions a,
b and c have to take place. Alternatively, constraints on the
interval allowed between two actions can be encoded using
clips (ii). Adapted from (Cresswell and Coddington 2003).

The following planning problem will be used to illustrate
how an STP may arise as a sub-problem from a planning
problem. The resulting STP in this case is similar to the one
provided in (Dechter, Meiri, and Pearl 1991).
Example. The example deals with planning for an indus-
trial environment, including rostering and production plan-
ning. For the purpose of this example, consider a situation
in which large parts of the plan have been computed already.
To get a fully working plan, all that remains to be done is to
ensure that at any time an operator is assigned to monitor
the casting process. However, as casting is a relatively
safe process, it can be left unattended for at most 20 minutes
(between operator shifts). Moreover, the monitoring room is
small, and has room for just one person.

There are two operators available that can be assigned to
the casting task: John and Fred. Today, Fred’s shift must
end between 7:50 and 8:10. However, before he leaves, he
has to attend to some paperwork, which takes 40–50 min-
utes. John is currently assigned to another task that ends
between 7:10 and 7:20. As it is located on the far side of the
plant, it will take him 30–40 minutes to make his way down
to the casting area.

The planning software generates a partial plan that lets
Fred start his shift at the casting process, with John taking
over after Fred leaves for his paperwork. The question now
is: is this a viable plan, and if so, what are the possible times
to let Fred stop, and let John start monitoring the casting
process?

To see how a Simple Temporal Problem can be used to
find the answer to our question, we first have to assign time-
point variables to each event in the plan: let x1 and x2 rep-
resent John leaving his previous activity and arriving at the
casting process, respectively; and let x3 and x4 denote
Fred starting his paperwork, and finishing it. A temporal
reference point, denoted by x0, is included to enable us to
refer to absolute time. For our example, it is convenient to
take x0 to stand for 7:00. If we represent all time intervals
in minutes, the graph representation of the STP for this ex-
ample is given in Figure 2; here, each vertex represents a
time-point variable, and each edge represents a constraint.
When represented as a graph in this way, the STP is also
referred to as a Simple Temporal Network (STN); however,
these terms are often used interchangeably.

It should be clear that the problem can arise from a PDDL
planning description of the overall problem. Durative ac-
tions with variable durations can be used to model the var-
ious activities and a “wrapper” or a “clip” (Cresswell and
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Figure 4: The minimal networkM corresponding to S

Coddington 2003) can be used to ensure that the process
does not go without an operator for more than 20 minutes
(see Figure 3).

Note that intervals labelling constraints can be used to
represent both freedom of choice for the actors (e.g. John’s
departure from his previous activity) as well as uncertainty
induced by the environment (e.g. travelling time). The ap-
proach presented in this paper applies to both interpreta-
tions; however, uncertainties can only be dealt with at plan
execution time, see e.g. (Vidal and Bidot 2001).

A solution to the STP instance is an assignment of a real
value to each time-point variable such that the differences
between each constrained pair of variables fall within the
range specified by the constraint. For example, the reader
can verify both from the network and from the original plan
that 〈x0 = 0, x1 = 10, x2 = 40, x3 = 20, x4 = 70〉 is a
solution to our example STP. Note that many solutions ex-
ist; to capture all of them, we are interested in calculating an
equivalent decomposable STP instance, from which all solu-
tions can then be extracted in a backtrack-free manner. The
traditional way to attain decomposability is by calculating
the minimal networkM. InM, all constraint intervals have
been tightened as much as possible without invalidating any
solutions from the original instance.

The minimal network of our example is depicted in Fig-
ure 4. Note that some previously existing constraints have
been tightened; also, since the graph is now complete, new
information has become available. In the remainder of this
text, we will not concern ourselves with finding individ-
ual solutions, but focus on finding decomposable networks
such asM from which such solutions can be efficiently ex-
tracted. Such a network of minimal constraints is especially
useful when further additions of constraints are expected,
such as in the process of constructing a plan, because check-
ing whether a new constraint is consistent with the existing
ones can be done in constant time. Subsequently adapting
the constraints in a constraint network may cost more time.
Developing an efficient incremental algorithm to this end is
outside the scope of this paper, but an interesting and impor-
tant topic for further study.

Previous Solution Techniques
Dechter et al. noted (1991) that the Floyd-Warshall all-pairs-
shortest-paths (APSP) algorithm can be used to compute the

Algorithm 1: DPC
Input: An STN instance S = 〈V,E〉 and an ordering

d = (vn, vn−1, . . . , v1)
Output: CONSISTENT or INCONSISTENT

for k ← n to 1 do1
forall i, j < k such that {i, k}, {j, k} ∈ E do2

wi→j ← min(wi→j , wi→k + wk→j)3
if wi→j + wj→i < 0 then4

return INCONSISTENT5
end6

end7

end8
return CONSISTENT9

minimal network M. Floyd-Warshall is simple to imple-
ment and runs in O

(
n3

)
time, where n is the number of

time-point variables in the STP instance. It corresponds to
enforcing the property of path consistency (PC) (Montanari
1974), known from constraint satisfaction theory.

For checking whether an STP instance is consistent,
Dechter et al. proposed directed path consistency (DPC),
which we include as Algorithm 1. The algorithm iterates
over the variables along some ordering d. After iteration k,
there exists an edge {vi, vj}, possibly added in line 3, for
every pair of nodes that are connected by a path in the sub-
graph induced by {vk ∈ V | k > max(i, j)} ∪ {vi, vj};
moreover, this edge is labelled by the shortest path in that
subgraph. This implies in particular that c1↔2 (if it exists)
is minimal. The algorithm runs in time O

(
n · (w∗(d))2

)
,

where w∗(d) is a measure called the induced width relative
to the ordering d of the vertices in the constraint graph. For
d = (vn, vn−1, . . . , v1), we have

w∗(d) = max
i
|{{vi, vj} ∈ E | j < i}|

Since w∗(d) is at most equal to n − 1 and may be much
smaller, DPC is more efficient than Floyd-Warshall; how-
ever, it does not in general produce a decomposable STP.

In 1999, Bliek and Sam-Haroud proposed the property
of partial path consistency (PPC) for constraint satisfaction
problems, which is defined on an (undirected) chordal con-
straint graph instead of the complete constraint graph as is
PC. Since chordal graphs play an important role in this pa-
per, we give the definition here.
Definition 1. Let G = 〈V,E〉 be an undirected graph. If
(v1, v2, . . . , vk, vk+1 = v1) with k > 3 is a cycle, then any
edge on two nonadjacent vertices {vi, vj} with 1 < j − i <
k−1 is a chord of this cycle. G is chordal (also ambiguously
called “triangulated”) if every cycle of length greater than
3 has a chord.∗

Chordal graphs generally contain far less edges than com-
plete graphs; this holds especially if the graph was originally
sparse. Hence, enforcing PPC is often far cheaper than is en-
forcing PC. Bliek and Sam-Haroud further proved that, for

∗The term “triangulated graph” is also used for maximal planar
graphs, which do not concern us here.



Algorithm 2: 4STP
Input: A chordal STN S = 〈V,E〉
Output: The PPC network of S or INCONSISTENT

Q← all triangles in S1
while Q 6= ∅ do2

choose T ∈ Q3
foreach permutation (vi, vj , vk) of T do4

wi→k ← min(wi→k, wi→j + wj→k)5
if wi→k has changed then6

if wi→k + wk→i < 0 then7
return INCONSISTENT8

end9

Q← Q∪{all triangles T̂ in S | vi, vk ∈ T̂}10

end11

end12
Q← Q \ T13

end14

convex problems, PPC produces a decomposable network
just like PC does.

Xu and Choueiry (2003) realised that the STP is a con-
vex problem, since each of its constraints is represented by
a single interval. Enforcing PPC on an STP instance then
corresponds to calculating the minimal labels for each edge
in the constraint graph, disregarding directionality. They im-
plemented an efficient version of the PPC algorithm, called
4STP, which we include as Algorithm 2.

The trade-off for the efficiency gained by enforcing PPC
is that less information is produced: whereas PC yields min-
imal constraints between each pair of time-point variables,
PPC only labels the edges in the chordal graph with mini-
mal constraints. However, it can easily be ensured that all
information of interest is produced by adding new edges to
the constraint graph before triangulation. For this reason,
enforcing PPC can truly be seen as PC’s replacement for
solving the STP.

Xu and Choueiry show empirically that the 4STP out-
performs the original PPC algorithm by Bliek and Sam-
Haroud, but they do not give a formal analysis of the time
complexity of 4STP. In the next section we give an anal-
ysis, showing that there exist problem instances for which
the time complexity of4STP is quadratic in the number of
triangles in the chordal constraint graph.

Worst-Case Analysis of4STP
Giving a tight bound on 4STP’s time complexity in terms
of the number of variables or constraints in the STP instance
is not straightforward. However, looking at Algorithm 2, it
can be seen that the time complexity mainly depends on the
number of triangles t in the chordal STN that is the input
of the algorithm. In a way, this number t represents the dif-
ficulty of the problem at hand. Note that there is no fixed
relation between t and the size of the input except that there
is an upper bound of O

(
n3

)
, attained for a complete graph.

In this section we give a class P of pathological STP in-
stances for which the time complexity of4STP is quadratic
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Figure 5: Pathological test case P6 for4STP

path weight
x0 → x7 ∞

x0 → x1 → x7 5
x0 → x1 → x6 → x7 4

x0 → x1 → x2 → x6 → x7 3
x0 → x1 → x2 → x5 → x6 → x7 2

x0 → x1 → x2 → x3 → x5 → x6 → x7 1
x0 → x1 → x2 → x3 → x4 → x5 → x6 → x7 0

Table 1: Total weights of paths in P6

in the number of triangles. These instances have a con-
straint graph consisting of a single directed cycle with all
zero weight edges; this cycle is filled with edges having care-
fully selected weights. Before formally defining class P , we
include instance P6 as an example in Figure 5; its triangles
are labelled τ1 through τ6 for ease of reference.

Definition 2. The class P consists of pathological STP in-
stances Pt on t triangles for every t ∈ N. Each instance Pt

is defined on t + 2 variables {x0, x1, . . . , xt+1} and has the
following constraints (where xt+2 wraps around to x0):

• {ci→i+1 | 0 ≤ i ≤ t + 1} with zero weight;
• {ci→j | 1 ≤ i ≤ j − 2 < t ∧ i + j − t ∈ {1, 2}} with

weight j − i− 1;
• {cj→i | 1 ≤ i ≤ j − 2 < t ∧ i + j − t ∈ {1, 2}} with

weight t− (j − i− 1).

None of the constraints in these instances are initially
minimal, except for the ones with zero weight; because
there exists a zero-weight path between every pair of ver-
tices, a constraint is minimal if and only if its weight is
zero. Furthermore, these instances are defined in such a way
that longer paths have progressively lower total weights, as
shown in Table 1 for the case of P6.

Theorem 1. When solving Pt, the 4STP algorithm may
require processing Ω

(
t2

)
triangles.

Proof. Assume that the initial queue of triangles is Q =
(τ1, τ2, . . . , τt). First, triangle τ1 is processed, leading to
the adjustment of w0→t+1 from infinity down to t − 1, and
wt+1→1 from 1 to 0. Triangle τ2 would be added to Q, but
is already contained therein. Now, triangle τ2 is processed,
and w1→t+1 has its weight decreased from t − 1 to t − 2,
which causes triangle τ1 to be appended to the queue; also,
wt→1 is set to 0. This process is repeated until triangle τt

has been processed; at this point, all edges making up τt

have minimal weights, and we have that Q = (τ1, . . . , τt−1).



The algorithm starts again at triangle τ1 and proceeds to tri-
angle τt−1, after which Q = (τ1, . . . , τt−2). By now, the
pattern is clear: the total number of triangles processed is
t+(t−1)+ · · ·+1 = t(t+1)/2, which is indeed quadratic
in t.

These cases make it clear that the sequence in which
4STP processes the triangles in a constraint graph is not
optimal. It may be worthwhile to explore if there is a natural
way to order triangles in a chordal graph. For this reason,
we now turn to some theory concerning chordal graphs.

Graph Triangulation
In this section, we list some definitions and theorems from
graph theory which underlie the new algorithm we propose
in the next section. These results are readily available in
graph-theoretical literature, e.g. (West 1996).

Definition 3. Let G = 〈V,E〉 be an undirected graph. We
can define the following concepts:

• A vertex v ∈ V is simplicial if the set of its neigh-
bours Nv = {w | {v, w} ∈ E} induces a clique, i.e.
if ∀{s, t} ⊆ Nv : {s, t} ∈ E.
• Let d = (vn, . . . , v1) be an ordering of V . Also, let Gi

denote the subgraph of G induced by Vi = {v1, . . . , vi};
note that Gn = G. The ordering d is a simplicial elimina-
tion ordering of G if every vertex vi is a simplicial vertex
of the graph Gi.

We then have the following (known) result:

Theorem 2. An undirected graph G = 〈V,E〉 is chordal if
and only if it has a simplicial elimination ordering.

In general, many simplicial elimination orderings ex-
ist. Examples of such orderings for the graph de-
picted in Figure 5 are (x0, x7, x1, x6, x2, x5, x3, x4) and
(x4, x0, x3, x5, x7, x2, x6, x1).∗

Chordality checking can be done efficiently inO (n + m)
time (where n = |V | and m = |E|) by the maximum car-
dinality search algorithm. This algorithm iteratively labels
vertices with the most labeled neighbours, whilst checking
that these neighbours induce a clique. At the same time, it
produces (in reverse order) a simplicial elimination ordering
if the graph is indeed chordal.

If a graph is not chordal, it can be made so by the addi-
tion of a set of fill edges. These are found by eliminating the
vertices one by one and connecting all vertices in the neigh-
bourhood of each eliminated vertex, thereby making it sim-
plicial; this process thus constructs a simplicial elimination
ordering as a byproduct. If the graph was already chordal,
following its simplicial elimination ordering means that no
fill edges are added. In general, it is desirable to achieve
chordality with as few fill edges as possible.

Definition 4 (Kjærulff). Let G = 〈V,E〉 be an undirected
graph that is not chordal. A set of edges T with T ∩ E = ∅
is called a triangulation if G′ = 〈V,E ∪ T 〉 is chordal. T is
minimal if there exists no subset T ′ ⊂ T such that T ′ is a

∗Like Xu and Choueiry, we disregard graph directionality
when discussing chordal STNs.

Algorithm 3: P3C
Input: A chordal STN S = 〈V,E〉 with a simplicial

elimination ordering d = (vn, vn−1, . . . , v1)
Output: The PPC network of S or INCONSISTENT

call DPC(S, d)1
return INCONSISTENT if DPC did2
for k ← 1 to n do3

forall i, j < k such that {i, k}, {j, k} ∈ E do4
wi→k ← min(wi→k, wi→j + wj→k)5
wk→j ← min(wk→j , wk→i + wi→j)6

end7

end8
return S9

triangulation. T is minimum if there exists no triangulation
T ′ with |T ′| < |T |.

Determining a minimum triangulation is an NP-complete
problem; in contrast, a (locally) minimal triangulation can
be found in O (nm) time (Kjærulff 1990). Since finding
the smallest triangulations is so hard, several heuristics have
been proposed for this problem. Kjærulff has found that both
the minimum fill and minimum degree heuristics produce
good results. The minimum fill heuristic always selects a
vertex whose elimination results in the addition of the fewest
fill edges; it has worst-case time complexity O

(
n2

)
. The

minimum degree heuristic is even simpler, and at each step
selects the vertex with the smallest number of neighbours; its
complexity is only O (n), but its effectiveness is somewhat
inferior to that of the minimum fill heuristic.

The New Algorithm
Given a chordal graph with t triangles, the best known
method for enforcing partial path consistency (PPC) is the
4STP algorithm. As we demonstrated in Theorem 1, this
algorithm may exhibit time complexity Ω

(
t2

)
. In this sec-

tion we propose an algorithm that instead has time complex-
ity O (t): it enforces PPC by processing every triangle ex-
actly twice. To achieve this result, the simplicial elimination
ordering d must be known; as we stated in the previous sec-
tion, this is a byproduct of triangulation. Our new algorithm
is called P3C and is presented as Algorithm 3. It consists of
a forward and backward sweep along d. The forward sweep
is just DPC (see Algorithm 1); note that because d is simpli-
cial, no edges will be added. We now state the main results
of this paper.

Theorem 3. Algorithm P3C achieves PPC on consistent
chordal STNs.

Proof. Recall that for the STN, enforcing PPC corresponds
to calculating the shortest path for every pair of nodes con-
nected by an edge, i.e. calculating minimal constraints.

The algorithm first enforces DPC along d; thus, after this
step, there exists an edge {vi, vj} for every pair of nodes
that are connected by a path in the subgraph induced by
{vk ∈ V | k > max(i, j)} ∪ {vi, vj}; moreover, this edge



is labelled by the shortest path in that subgraph. This means
in particular that c1↔2 (if it exists) is minimal.

It can now be shown by induction that after iteration k
of the forward sweep (lines 3–8), all edges in the subgraph
Gk induced by {vi ∈ V | i ≤ k} are labelled with minimal
constraint weights. The base case for k ≤ 2 has already been
shown to hold; assuming that the proposition holds for k−1,
we show that it also holds for k. Consider any constraint
ck→i with i < k; by the induction hypothesis, we know that
all constraints ci→j with i, j < k are already minimal. To
arrive at a contradiction, assume that ck→i is not minimal
after the kth iteration; i.e. after the iteration completes, there
still exists some path π = (vk → vj1 → · · · → vjl

→ vi)
with total weight wπ < wk→i. We show below that this
cannot occur; by symmetry, this result then extends to ci→k.

If there is any part of π outside Gk, with endpoints u, w
in Gk, then by the DPC property we can replace this part of
π by the edge (u, w); assume therefore that π lies entirely
within Gk. Now, since vk appears in d before both its neigh-
bours vj1 and vi, there must exist an edge {vj1 , vi}. By the
induction hypothesis, cj1→i is minimal; the shortest path can
thus be further reduced to π′ = (vk → vj1 → vi). But then,
we have that wk→i ≤ wπ′ = wk→j1 + wj1→i ≤ wπ by the
operations performed in the kth iteration, which contradicts
our assumption.

Theorem 4. Algorithm P3C enforces PPC in time Θ(t),
where t is the number of triangles in the (chordal) STN. If
the instance is inconsistent, this is discovered in time O (t).

Proof. The first part of the algorithm is just the directed path
consistency algorithm; if the problem is inconsistent, this is
discovered in this phase. After this first leg, every triangle
has been visited exactly once. The backward sweep (lines 3–
8) then follows the same ordering backwards and again visits
every triangle exactly once. Since each visit of a triangle
takes constant time, our claims on time complexity easily
follow.

Upper bounds on the time complexity can also be ex-
pressed in other parameters:

Corollary 5. The P3C algorithm establishes PPC or finds
inconsistency in time O

(
n · (w∗)2

)
⊆ O

(
nδ2

)
⊆ O

(
n3

)
.

Here, w∗ is the minimal induced width of the graph along
any ordering, and δ is the maximum degree of any vertex in
the graph.

Proof. It is clear that to within a constant factor, the time
complexity of P3C is identical to that of DPC. Since it holds
that for a chordal graph the induced width is minimal along
a simplicial elimination ordering (Dechter 2003, p. 90), the
first bound follows. The latter two bounds follow from the
observation that w∗ ≤ δ ≤ n.

Experimental Results
In this section, we evaluate our new P3C algorithm against
4STP. We ran three types of test cases: (i) pathological
instances, as described in Definition 2; (ii) STPs represent-
ing subproblems of job-shop problem instances; and (iii) the
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job-shop instances with enforced consistency. In our theo-
retical analyses above, the number of triangles in the con-
straint graph turned out to be of paramount importance. For
this reason, we set out this parameter on the horizontal axis
of our graphs, instead of the number of vertices. The rela-
tion between the numbers of vertices and triangles in our test
cases is depicted in Figure 6; in this figure, we also delineate
the theoretical maximum number of triangles (in case of a
complete graph). Note that the job-shop benchmark set ex-
hibits a jump in the number of triangles for instances bigger
than 190 vertices, whereas the amount of edges continued to
increase gradually.

We implemented the algorithms in Java and ran them on a
2.4 GHz AMD Opteron machine with 4 GB of memory. We
measured the time required to complete a run of the algo-
rithms proper; i.e., the triangulation of the constraint graphs
was excluded from the measurements.

For the evaluation of the pathological cases from Defini-
tion 2, we opted to include the Floyd-Warshall APSP algo-
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Figure 8: Performance of 4STP and P3C on job-shop
benchmarks

rithm. The results are included in Figure 7. For this specif-
ically crafted category of problem instances, in which the
number of triangles is directly proportional to the number
of vertices, the performance of the three algorithms closely
follows the theoretical analysis. Floyd-Warshall exhibits
performance cubic in the number of triangles, 4STP is
quadratic, and our new P3C algorithm remains linear in the
amount of triangles, as was proven above.

The instances of the job-shop problem we considered are
taken from the SMT-LIB benchmark library (Ranise and
Tinelli 2003). In effect, these are instances of the NP-hard
Disjunctive Temporal Problem (DTP): each constraint is a
disjunction of temporal inequalities. We generated a set of
STP instances by randomly selecting a single temporal in-
equality from each disjunction. If such a component STP
were found to be consistent, it would constitute a solution
to the job-shop problem; combined with the size of the DTP
instances, this makes it highly unlikely that a random selec-
tion yields a consistent STP instance. Nevertheless, these
instances can be considered representative of the types of
problems that an STP solver may be expected to deal with
as part of a planning algorithm that can deal with time.

In Figure 8, we include the results of running P3C and
4STP on STP instances generated in this fashion. The
jump that was already noticed in Figure 6 reappears in this
figure. Note, however, that across this jump the run time
does not keep pace with the number of triangles. Clearly,
the number of triangles in the problem instance is not the
only factor that determines problem complexity; recall that
the number of vertices and constraint edges only gradually
increase over the gap. We also observe that4STP does not
display a run time that is quadratic in the number of triangles
for these problem instances; as a consequence, the difference
between the results is much closer. However, P3C can still
clearly be seen to outperform its predecessor.

Running the algorithms on inconsistent instances is not a
full test of their prowess, because inconsistency is generally
discovered rather early along the way of calculating min-
imal constraints; in the case of P3C, any inconsistency is
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Figure 9: Performance of 4STP and P3C on job-shop
benchmarks with enforced consistency

guaranteed to be found within the first loop. For this reason,
we randomly relabeled the constraint edges in the job-shop
STP instances in such a way that consistency was guaran-
teed, and then ran the algorithms. The results of these tests
are depicted in Figure 9. Calculating minimal constraints
takes much more time than finding an inconsistency; for this
reason, we only included the smaller problem instances (up
to 2500 instead of 9000 triangles). Again, we can conclude
that our P3C algorithm consistently outperforms 4STP,
though the results are somewhat closer than for the inconsis-
tent STPs. Finally, note that the performance of P3C is not
exactly linear in the amount of triangles for these test cases.
This is probably due to the overhead incurred by the used
data structures (hash tables), which were implicitly assumed
to have constant-time access in the theoretical analysis.

Conclusions and Future Research
We have taken a look at existing solution techniques for the
Simple Temporal Problem, and identified a class P of prob-
lem instances for which the best existing algorithm 4STP
exhibits a time complexity quadratic in the number of trian-
gles. By visiting the triangles in a specific order in a new
algorithm, called P3C, we showed that we can solve STP
within a time bounds linear in the number of triangles. This
so-called simplicial elimination ordering is a byproduct of
the triangulation phase, and therefore does not require any
additional calculations compared to4STP.

We corroborated our theoretical results with experiments
that included instances from both P and a more realistic set
of job-shop benchmarks. Throughout our experiments, P3C
clearly and consistently outperformed 4STP. Future work
may evaluate the algorithms in a wider range of practical
settings.

Sometimes, it suffices to just determine consistency of the
STP. In these cases, instead of enforcing PPC, one can use
the Bellman-Ford algorithm, which runs in O (nm) time.
Although in the worst case this yields the same time com-
plexity as P3C, we have seen in a separate study that it is



faster on some of our benchmark problems. However, P3C
also yields minimal constraints, which is very useful in the
context of planning: here, the additional information about
remaining slackness is often more important than just know-
ing whether the plan is consistent.

We expect that with little extra work, the results attained
here extend to general constraint satisfaction problems. The
original work on PPC by Bliek and Sam-Haroud had this
wider scope, but in the proof of P3C’s soundness we chose
to focus only on the STP, this being our subject of inter-
est. Future research will have to determine whether the algo-
rithm can indeed be applied in the context of general CSPs,
which would mean that our work also becomes of interest to
the CSP community.

Another line of future work comes from the observation
that using P3C, the worst-case complexity for establishing
PPC is of the same order as the worst-case complexity for
determining a minimal triangulation. It is worthwhile to
investigate the trade-off between, on the one hand, faster
triangulation (e.g. by relaxing the condition of minimality)
implying worse run time of the P3C algorithm, and, on the
other hand, better but slower triangulation yielding faster run
time of P3C.

Finally, we plan to propose an incremental PPC algorithm
in a future publication, building on the properties of chordal
graphs already explored here. An incremental solver takes
as input a partially path-consistent STP instance and a new
constraint to be added or an existing constraint to be tight-
ened; it then reports whether the new constraint still yields
a consistent instance and, if so, enforces PPC again. This is
especially useful for dealing with more complex (planning)
problems which require solving many, progressively larger
instances of the STP.
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